Galois module structure of Milnor K-theory mod p^s in characteristic p
نویسندگان
چکیده
Let E be a cyclic extension of pth-power degree of a field F of characteristic p. For all m, s ∈ N, we determine KmE/pKmE as a (Z/pZ)[Gal(E/F )]-module. We also provide examples of extensions for which all of the possible nonzero summands in the decomposition are indeed nonzero.
منابع مشابه
Galois Module Structure of Milnor K - Theory
Let E be a cyclic extension of pth-power degree of a field F of characteristic p. For all m, s ∈ N, we determine KmE/p sKmE as a (Z/pZ)[Gal(E/F )]-module. We also provide examples of extensions for which all of the possible nonzero summands in the decomposition are indeed nonzero. Let F be a field of characteristic p. Let KmF denote the mth Milnor K-group of F and kmF = KmF/pKmF . (See, for ins...
متن کاملGALOIS MODULE STRUCTURE OF pTH-POWER CLASSES OF EXTENSIONS OF DEGREE p
For fields F of characteristic not p containing a primitive pth root of unity, we determine the Galois module structure of the group of pth-power classes of K for all cyclic extensions K/F of degree p. The foundation of the study of the maximal p-extensions of fields K containing a primitive pth root of unity is a group of the pth-power classes of the field: by Kummer theory this group describe...
متن کاملMilnor K-groups and Function Fields of Hypersurfaces in Positive Characteristic
Let X be an integral affine or projective hypersurface over a field F of characteristic p > 0, and let F (X) denote its function field. In a recent article, Dolphin and Hoffmann obtained an explicit description of the kernel of the natural restriction homomorphism between the rings of absolute Kähler differentials of F and F (X), respectively. In this note, we examine the possibility of derivin...
متن کاملGalois Module Structure of Galois Cohomology
Let F be a field containing a primitive pth root of unity, and let U be an open normal subgroup of index p of the absolute Galois group GF of F . We determine the structure of the cohomology group H(U, Fp) as an Fp[GF /U ]-module for all n ∈ N. Previously this structure was known only for n = 1, and until recently the structure even of H(U, Fp) was determined only for F a local field, a case se...
متن کاملTwo-dimensional representations in the arithmetic of modular curves
In the theory of automorphic representations of a reductive algebraic group G over a number field K, it is broadly — but not always — true that irreducible representations occurring in L(GA/GK) occur with multiplicity one. In a classical special case (G = GL(2), K = Q, and where we restrict attention to automorphic representations which are holomorphic, cuspidal, and of weight 2), the Galois-th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008